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Abstract

Investigations of classical signature change have generally envisaged
applications to cosmological models, usually a Friedmann-Lemâıtre-
Robertson-Walker model. The purpose has been to avoid the inevitable
singularity of models with purely Lorentzian signature, replacing the
neighbourhood of the big bang with an initial, singularity free region
of Euclidean signture, and a signature change. We here show that
signature change can also avoid the singularity of gravitational col-
lapse. We investigate the process of re-birth of Schwarzschild type
black holes, modelling it as a double signature change, joining two
universes of Lorentzian signature through a Euclidean region which
provides a ‘bounce’. We show that this process is viable both with
and without matter present, but realistic models — which have the
signature change surfaces hidden inside the horizons — require non-
zero density. In fact the most realistic models are those that start as a
finite cloud of collapsing matter, surrounded by vacuum. We consider
how geodesics may be matched across a signature change surface, and
conclude that the particle ‘masses’ must jump in value. This scenario
may be relevant to Smolin’s recent proposal that a form of natural
selection operates on the level of universes, which favours the type of
universe we live in.

Short Title: Signature Change in Black Holes

PACS: 04.20.-q, 98.80.Bp, 11.30.-j
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1. Introduction

Space-time in general relativity is usually considered to possess a metric of Lorentzian signature.
Positive definite metrics, with a Euclidean signature, have come into prominence lately through the
Hartle and Hawking program concerning the wave function of the universe [1] — [5]. A general aim
of that program is to try get a handle on the boundary conditions of the universe, and an intriguing
suggestion made in [6, 1] is that the universe has no boundary, i.e. no origin where initial conditions
have to be set, which is only possible if space-time emerged from a Euclidean region preceeding a
change of signature. Another interesting development is the introduction of Euclidean wormholes.
These wormholes can arise in one universe and connect it either to itself or to another universe. In
order to attribute a transition probability, for example, between two Lorentzian regions, integration of
the action along the tube connecting the two regions under study is required. In normal Lorentzian
space the path integral approach leads to oscillating behavior, and hence to non-convergence of the
integral. To obtain convergence, the substitution t → it is applied, thus introducing a Euclidean
signature. This means in effect that we have two Lorentzian regions connected through a classically
forbidden Euclidean region.

Paralleling the Quantum cosmology program, papers [7] — [10] pointed out that the possibility
of a change in the signature of the metric is not restricted to a quantum description of General Relativity.
It was shown in [8, 9] that classical General Relativity does not prevent the existence of Euclidean
regions and some examples of signature change in the Friedmann-Lemâıtre-Robertson-Walker metric
were produced. Further investigations were pursued in [11] — [30]. Even though the metric signature
is invisible to the Einstein Field Equations, it should be noted [8, 19, 23] that a change of signature
is not, either g00 goes through zero, in which case the metric is degenerate and g00 singular there, or
both g00 and g00 jump from positive to negative values, in which case the metric is discontinuous. In
either case, the Einstein Field equations cannot be defined in the usual way at the signature change
[23, 27].

The Friedmann-Lemâıtre-Robertson-Walker model has been considered repeatedly in both classi-
cal and quantum cosmological signature change, but few other models have been considered, especially
in the classical signature change literature. This paper constructs a classical model of signature change
within the black hole topology, using Schwarzschild and Lemâıtre-Tolman models — i.e. a Kruskal-
Szekeres type of manifold. It examines the transition from a black hole, through a signature change to
a Euclidean region which reverses the collapse process, leading to a second signature change, and the
birth of a white hole and a new universe. We also determines whether the signature change surface
can be hidden inside the horizon. It continues the approach of papers [8, 9, 19] by exploring strictly
classical signature changes in the Schwarzschild and Lemâıtre-Tolman metrics.

The investigation of transitions between Lorentzian geometries through a Euclidean region are
also of interest when considered in conjunction with Smolin’s idea [31]. Smolin’s hypothesis is a
proposed mechanism for determining the particular values of fundamental physical constants observed
today, and thus justifying the anthropic principle. In Smolin’s paper, life supporting characteristics
are linked to the existence of stars whose abundance is linked to the abundance of black holes. It is
envisaged that each ‘universe’ either expands and re-collapses or expands indefinitely, possibly forming
one or more black holes. Instead of classical singularities occuring — a crunch singularity or black
hole future singularities — quantum cosmological tunneling gives birth to new universes, and hence
a ‘natural history’ of universes arises. Furthermore, Smolin proposes that the process of tunnelling
generates small random changes — ‘mutations’ — in the values of the physical constants. Those
combinations of values for which the universe generates many black holes will lead to large numbers
of offspring having very similar values. Thus, after the passage of many generations of universes, the
population of universes will come to be dominated by those that generate lots of stars and black holes.
This parallels natural selection in that the ‘fittest’ universes reproduce prolifically, but differs in that all
blood lines (sets of constants) survive.

In what follows, we consider the junction conditions at a signature change in a Schwarzschild
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type metric, the choice of signature change surface, the form of the metric in the Euclidean region, and
how geodesics should be propagated through. Generalisations lead naturally to the Lemâıtre-Tolman
metric and its Kantowski-Sachs limit, which allow more interesting results.

The first step one has to take is to ensure that the various regions composing the space match
geometrically. We adopt the Darmois junction conditions [32], and the application of them to signature
change as presented in [19].

2. Junction Conditions and Conservation Laws

Conventions

We here work with 4-dimensional manifolds of Lorentzian and Euclidean signatures (− + ++)
and (+ + ++) respectively. Greek indices range 0-3 and Latin indices 1-3. Subscripts E and L denote
quantities defined in or evaluated in Euclidean and Lorentzian regions respectively, and expressions
without such subscripts are valid in either region. These may also be written as superscripts, to avoid
confusion with tensor indices. Geometric units are used, G = c = 1, and the cosmological constant is
set to zero, Λ = 0.

Darmois Matching conditions

In standard Darmois matching, where no signature change occurs, space is composed of two
regions, V + and V −, with a common boundary surface Σ. More precisely, an isomorphism ψ : Σ+ →
Σ− allows us to identify the boundaries of V ±, Σ+ = Σ− = Σ . The two regions have coordinate
charts xµ

+ and xµ
− and metrics g+

µν and g−µν respectively. Setting the intrinsic coordinates of the junction
surface to be ξi

+ = ξi
−

= ξi, the locus of the surface is given parametrically in V ± by xµ
± = xµ

±(ξi), or
by Ξ±(xµ

±) = 0. We write Q |± to denote evaluation of some quantity Q in the limit as the surface is
approached from either region, and [Q] to denote the difference between the two limiting values

[Q] = Q |+ − Q |− (1)

The Darmois conditions [32] require the continuity of the first and second fundamental forms of the
junction surface — i.e. the intrinsic metric and the extrinsic curvature. The intrinsic metric is obtained
by projecting the 4-metric onto Σ using the basis vectors eµ

i of Σ

3gij = gµνe
µ
i e

ν
j , eµ

i =
∂xµ

∂ξi
(2)

The extrinsic curvature describes the surface’s shape in the enveloping space, and is the projection onto
Σ, of the rate of change of the surface normal nµ in the enveloping space, with respect to position on
Σ.

Kij = (∇µnν) e
µ
i e

ν
j = −nλ

(

∂2xλ

∂ξi∂ξj
+ Γλ

µν

∂xµ

∂ξi

∂xν

∂ξj

)

, nν = ± ∂νΞ
√

εn∂µΞ∂µΞ
(3)

where εn = nνnν = +1 if Σ is time-like and −1 if it is space-like. To conform with (1), the sign in (3)
is set so that the nν

±
point from V − to V + on both sides of Σ. The Darmois conditions may now be

given as:
[3gij] = 0 & [Kij] = 0 (4)

In the constant signature case, according to [33], these are equivalent to the Lichnerowicz matching
conditions [34], whereas the O’Brien and Synge conditions [35] are too restrictive.

When we introduce a signature change at Σ, the equivalence between the Darmois and Lich-
nerowicz conditions breaks down. Both the Lichnerowicz and O’Brien and Synge conditions insist
that all the 4-d metric components be matched on either side of the junction surface, leading to a
degenerate metric, a non-affine time coordinate, and breakdown of the Einstein field equations. We
select the Darmois matching conditions as they are invariant to the coordinates chosen on either side.
They require no modification at a surface of signature change. In fact they are blind to the change of
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signature, thus extending the signature blindness of the Einstein field equations. A signature change
surface is necessarily space-like, so εn = nµn

µ = +1 in the Euclidean region, and −1 in the Lorentzian
region.

Conservation Laws

In [19, 20] the implications of signature change for conservation laws are worked out. Conser-
vation laws are based on the divergence theorem — i.e. the components version of Stokes theorem
for a 3-form in a metric space. The theorem requires a region W , bounded by a closed surface S
with outward pointing unit normal mα, smooth non-zero volume elements d4W and d3S on W and S
respectively, a smooth non-zero metric, so that the inverse metric is well defined, and a smooth field
Ψδ: ∮

S
Ψδmδd

3S =
∫

W
∇δΨ

δd4W (5)

It should be noted that nα is the normal to the junction surface Σ, and mα is the normal to S, the
closed boundary of W ;

These conditions are not satisfied through a signature change. Thus physical conservation laws
need to be revised. For the electro-magnetic field we work with the 4-current Ψδ = Jδ, and for the
gravitational field, a component of the Einstein tensor Ψδ = Gγδvγ where vγ is some suitable smooth
vector field. Since vγ and vγ are not both smooth through a signature change, Ψδ = Gδ

γv
γ is also

considered.

Firstly, at a boundary where no signature change occurs, the Darmois junction conditions may
be used to patch together two regions that adjoin the boundary on either side, and within which the
divergence theorem does hold. It is shown that these conditions, which give rise to Israel’s identities
[36] for the Einstein tensor,

[Gµνn
µnν] = 0 (6)

[Gµνe
µ
i n

ν] = 0 (7)

where

Gµνn
µnν =

1

2
{K2 −KijK

ij − εn
3R} (8)

Gµνe
µ
i n

ν = 3∇jK
j
i − 3∇iK (9)

3R and 3∇i being the intrinsic curvature invariant and covariant derivative of the 3-surface, and K =
gijKij = Kj

j , are sufficient to ensure conservation of energy-momentum through Σ. Combined with
suitable junction conditions on the electro-magnetic field, they also ensure conservation of 4-current,
with similar results applying to other fields.

At a surface of signature change, εn now flips sign across Σ, and this leads to modified Israel
identities

[Gµνn
µnν] = −3R (10)

[Gµνe
µ
i n

ν] = 0 (11)

It is necessary to distinguish two normals to Σ: lδ = ∂ξ0/∂xδ = e0δ and nδ = ∂xδ/∂ξ0 = eδ
0 where

nγnγ = εn = lγl
γ and gγδn

δ = εnlγ . A similar analysis of the divergence theorem through Σ is made,
paying careful attention to index position, the definition of the extrinsic curvature, and the directions of
the various normals. It is found that, in the process of patching together the two divergence theorems
on either side of the signature change, the combined theorem aquires a surface term, so conservation
laws must in general be modified. The result is

∮

S
Ψβmβ d

3S −
∫

So

E d3So =
∫

W
∇βΨβ d4W (12)
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where
E = (Ψα

+l
+
α − Ψα

−
l−α ) = [Ψαlα] (13)

and So is the region of Σ enclosed by S. For each of the four choices Ψδ = Gγδvγ , vγ = lγ or ei
γ and

Ψδ = Gδ
γv

γ , vγ = nγ or eγ
i the surface term E = E(vγ) or E(vγ) in the conservation law is

E(lα) = [Gαβlαlβ] = −3R (14)

E(ei
α) = [Gαβlαe

i
β] = 2(3∇jK

ij − 3gij3∇jK) (15)

E(nα) = [Gα
β lαn

β] = K2 −KijK
ij (16)

E(eα
i ) = [Gα

β lαe
β
i ] = 2(3∇jK

j
i − 3∇iK) (17)

The main results are expressed in a way that allows any set of junction conditions to be applied
at the signature change, so this conclusion is independent of choice of junction conditions, as well as
being coordinate invariant. Alternative approaches to signature change, which emphasise maximum
smoothness of the metric and the matter, are able to eliminate some, but not all of the surface effects.
Removal of all surface effects requires that the surface of signature change not only have zero extrinsic
curvature, but also have zero (3-d) Ricci scalar, which eliminates all realistic cosmological models.

At a signature change then, the Darmois conditions still impose the same number of metric
conditions as was sufficient for no signature change, and they still result in a modified set of conservation
laws, albeit with surface effects. These can be understood as a consequence of the change in the
character of physical laws. Whilst it is of interest to follow the maximum continuity, Lichnerowicz
type approach, it is argued that physically interesting scenarios may be eliminated by it. The following
models are an example.

3. The Schwarzschild Case

In the usual Schwarzschild line element [37] the signs of the metric components gTT and gRR

interchange across R = 2M , thus leading to reinterpertaion of the roles of R and T . Consequently it
is not clear which sign we should change to introduce the signature change, assuming that the general
form of the metric is retained. We shall investigate both possibilities, so we insert two new sign factors
εT = ±1 and εR = ±1 in the metric:

ds2 = εT

(

1 − 2M

R

)

dT 2 + εR

(

2M

R
− 1

)−1

dR2 +R2dΩ2 (18)

where dΩ2 = dθ2 + sin2 θ dφ2. We are interested only in transitions from the standard Schwarzschild
metric to a Euclidean region, so we disregard the sign combination which gives us a second (non-
vacuum) Lorentzian manifold (εT = +1, εR = +1). With both the other sign combinations (εT =
−1, εR = +1 and εT = +1, εR = −1) it appears that there is a Euclidean region on one side of
R = 2M , and a “double Lorentzian” (or “Kleinian”) region (with two time-like coordinates) on the
other side. It will become clear that the two Euclidean ‘regions’ are in fact geodesically complete
manifolds.

Whilst Euclidean regions have no time, there will be a direction which is the extension of the
time direction in the Lorentzian region. One may determine whether the Euclidean metric is ‘static’ or
‘dynamic’ relative to this direction.

The Einstein tensor components for this metric are [38]

GTT =
−εT (1 + εR)(1 − 2M/R)

R2
, GRR =

(1 + εR)

R2(1 − 2M/R)
, Gθθ = 0, Gφφ = 0 (19)

A vacuum solution requires εR = −1. Transitions requiring a change of sign in εR introduce non-
vacuum solutions with strangely behaved matter, which we shall consider, since we don’t really know
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what to expect in Euclidean signature physics. The Ricci scalar and the Kretschmann scalar are

Rµ
µ =

2(1 + εR)

R2
, k = RµνλσRµνλσ =

8[(1 + εR)R2(1 − 2M/R) + 6M 2]

R6
(20)

where Rµν and Rµνλσ are the Ricci and Riemann tensors. Regardless of signature, k is always singular
at R = 0, and never at R = 2M , so the Euclidean region (εT = +1, εR = −1, R ≥ 2M) has no
singularities.

We now investigate whether signature change is possible on two simple spacelike surfaces — in
R ≥ 2M a constant T surface, and in R < 2M a constant R surface. More general transition surfaces
will be considered using a different metric form. The surface coordinates ξ i may then be chosen to be
identically 3 of the enveloping coordinates xµ in V − and V + — viz (T, θ, φ) or (R, θ, φ). (c.f. [39] in
which the Euclidean solution for vacuum with a cosmological constant is found.)

Constant T surface

The intrinsic metric, unit normal, and extrinsic curvature of Σ are given in either region by

dσ2 =
−εR

(1 − 2M/R)
dR2 +R2dΩ2, εT εn = 1 (21)

nµ =
δµ
T

√

εT εn(1 − 2M/R)
, nµnµ = εn = εT , Kij = 0 (22)

and the surface effects are all zero.

E(lα) =
2(1 + εR)

R2
= 0, E(ei

α) = 0, E(nα) = 0, E(eα
i ) = 0 (23)

The two choices of future direction for nµ are equivalent in a static metric. The choice of a standard
Schwarzschild solution in the Lorentzian region sets the sign of εR to −1, so εT flips across Σ, and this
requires that RL ≥ 2ML for a space-like surface. Although (21) is singular at R± = 2M±, all constant
T surfaces on the Lorentzian side intersect that point, which is only a coordinate singularity, being the
middle of the Schwarzschild wormhole at its moment of maximum expansion. Applying [3gij] = 0 and
requiring the angular coordinates on either side to coincide, θE = θL, φE = φL, also fixes the areal
radius and mass terms to be the same, RE = RL and ME = ML. Obviously [Kij] = 0 imposes no
further constraints. Since all T = constant surfaces are equivalent (for a static metric), this result is
not surprising.

This matching corresponds to vacuum both before and after the signature change, but the
change surface extends to spatial infinity in both exterior regions RL > 2ML. We are really seeking a
change surface that is near the singularity R = 0 and hidden inside the horizon. No spacelike surface
is further from R = 0 or less hidden than that of constant T .

Since the middle of the throat at maximum expansion is a stationary point of the Killing vector
χµ = δµ

T on the Lorentzian side, and since all Lorentzian constant T surfaces match to all Euclidean
constant T surfaces, this must be a stationary point on the Euclidean side also. This leads us to suspect
that it is not possible to find two separate, non-intersecting T = constant surfaces in the Euclidean
region. In other words, we can’t construct a Euclidean region between two separate Lorentzian regions.

Constant R surface

This is the simplest non-vacuum case. The fundamental forms and surface effects are:

dσ2 = εT (1 − 2M/R)dT 2 +R2dΩ2, εRεn = 1 (24)

nµ = −
√

εRεn(2M/R− 1) δµ
R, nµnµ = εn = εR (25)

KTT =
−εTM

√

εRεn(2M/R− 1)

R2
,
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Kθθ = −R
√

εRεn(2M/R− 1), Kφφ = sin2 θ Kθθ (26)

E(lα) =
−2

R2
, E(ei

α) = 0, E(nα) =
−2εRεn
R2

=
−2

R2
, E(eα

i ) = 0 (27)

where we have chosen nµ to point in the direction of collapse, i.e. towards R decreasing. A similar
analysis gives us εT = −1, RL < 2ML, and εR flips; choosing θE = θL, φE = φL and TE = TL with
[3gij] = 0 ⇒ RE = RL, and ME = ML. No further restrictions are necessary to ensure [Kij] = 0.

This demonstrates that matching can be achieved on a surface that is entirely inside the horizon,
but since the Euclidean region is not empty in this case, it still leaves open the interpretation of the
energy stress tensor on the Euclidean side. Further, since R is the timelike coordinate on the Lorentzian
side, R is the nominal ‘time’ direction on the Euclidean side too, being orthogonal to the transition
surface, so this Euclidean manifold, with R < 2M , is ‘dynamic’.

Geodesic Coverage

What do the particle paths look like in the combined space? We now investigate the behavior of
radial timelike geodesics. Adding the angular components of the motion should present no problem, as
θ± and φ± are identified at Σ. One aim is to verify that the space is geodesically complete, and in the
context of this paper geodesics that end on a curvature singularity are considered to be as complete
as is possible. The second aim is to see how geodesics should be continued at the transition, and
whether the set of all geodesics arriving at the Lorentzian side of the transition generate all possible
geodesics emerging on the Euclidean side. Three schemes for continuing geodesics are considered.
Two of them attempt to match particle 4-velocities (unit normal tangent vectors), and one attempts
to match 4-momenta.

The geodesic equation
uµ∇µu

ν = 0 (28)

with the condition for a ‘time-like’ unit normal

uµuµ = εn (29)

where εn = εT at a constant T transition or εR at a constant R transition, leads to the acceleration

R̈ =
−εRεnM
R2

, (30)

and gives the following unit tangent vectors, where the signs have all been chosen so that positive h
and q values always give consistently future directed infalling tangent vectors where T > 0.

Lorentzian: uµ =

(

hL

(1 − 2M/R)
,−qL

√

h2
L − (1 − 2M/R) , 0, 0

)

, qL = ±1 (31)

There are three types of geodesics: (a) 1 − 2M/R ≤ h2
L < 1: geodesics recollapsing from past to

future singularities, R = 0, with a maximum at R = 2M/(1− h2
L) ≥ 2M ; (b) h2

L > 1: monotonically

ingoing or outgoing geodesics with finite velocity
√

h2
L − 1 at R = ∞, reaching R = 0 either in the

past or future; (c) h2
L = 1: marginal monotonic geodesics with zero velocity at R = ∞.

Euclidean, R ≥ 2M : uµ =

(

hE

(1 − 2M/R)
,−qE

√

(1 − 2M/R) − h2
E , 0, 0

)

, qE = ±1 (32)

In this case there is only one type of geodesic, descending from R = ∞, through a minimum at
R = 2M/(1 − h2

E) ≥ 2M , and re-expanding back out. The allowed range of hE is then 0 ≤ h2
E ≤

(1− 2M/R), and all geodesic paths are restricted to the region R ≥ 2M . The only geodesic reaching
R = 2M is the one with hE = 0 which in effect is a stationary point. This is in accord with the range
of R at Σ, and confirms that the region R ≥ 2M is a geodesically complete manifold.

Euclidean, R < 2M : uµ =

(

−hE

2M/R− 1
,−qE

√

(2M/R− 1) − h2
E , 0, 0

)

, qE = ±1 (33)
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These geodesics all expand from R = 0 and re-collapse back, and have maxima at R = 2M/(1+h2
E) ≤

2M , where h2
E ≤ (2M/R − 1). Thus the region R ≤ 2M is also geodesically complete, but does not

have the desired bouncing property. (R = 2M would not actually be encountered in this region of our
model, since RΣ < 2M .)

Since geodesic tangent vectors have a unit magnitude that flips sign across a signature change,
it is impossible to match all components of uµ

± across Σ. We consider here three possible schemes,
and summarise the resulting conditions in Table 1 below:

(i) Match uR values, with uµuµ = εn giving a jump in the uT values;
(ii) Match uT values, with uµuµ = εn giving a jump in the uR values;
(iii) Match all components of the 4-momentum P µ = muµ, allowing Pµ and |P µPµ| =

m2 to jump. (This is equivalent to matching non-normalised tangent vectors,
for which the metric degeneracy at Σ is irrelevant, and standard existence and
uniqueness theorems guarantee that geodesic continuation of all tangent vectors
is possible.)

Continuation Signature Change Surface
Condition Const. R, R < 2M Const. T , R ≥ 2M

(i) uR
E = uR

L qE = qL, h2
E = −h2

L = 0 qE = qL, h2
E + h2

L = 2(1 − 2M/R)
(ii) uT

E = uT
L hE = hL hE = hL

(iii) P µ
E = P µ

L 2h2
Eh

2
L = (h2

L − h2
E)(2M/R− 1), 2h2

Eh
2
L = (h2

L + h2
E)(1 − 2M/R),

qE = qL, mEhE = mLhL qE = qL, mEhE = mLhL

Table 1. Conditions resulting from the three continuation conditions at two types of signature
change that retain a Schwarzschild metric form.

Transition surface Const. R, R < 2M Const. T , R ≥ 2M
Allowed hL h2

L ≥ 0 ≥ (1 − 2M/R) h2
L ≥ (1 − 2M/R)

Allowed hE h2
E ≤ (2M/R− 1) h2

E ≤ (1 − 2M/R)

Table 2. Summary of allowed ranges of geodesic energy parameters on either side of the
two signature change surfaces.

When these are compared with the allowed ranges of h in each region, summarised in Table 2,
we see that conditions (i) and (ii) do not allow the continuation of all possible geodesics that might
arrive at either type of signature change surface, whereas (iii) continues all geodesics at both types.
For example, identifying uR

E = uR
L at a constant T surface gives us

h2

E = 2(1 − 2M/R) − h2

L, R ≥ 2M, h2

L ≥ (1 − 2M/R), h2

E ≤ (1 − 2M/R) (34)

so we can easily find a large enough value for h2
L to make hE imaginary. For case (iii) we find

Constant T transition:
(

mE

mL

)2

=

(

hL

hE

)2

=
2h2

L

(1 − 2M/R)
− 1 (35)

Constant R transition:
(

mE

mL

)2

=

(

hL

hE

)2

=
2h2

L

(2M/R− 1)
+ 1 (36)

Since h2
L ≥ (1 − 2M/R) the particle’s Euclidean mass is always greater than it’s Lorentzian mass

mE ≥ mL, as well as h2
L ≥ h2

E.

Thus it turns out that condition (29), forcing the tangent vectors to be unit vectors, is too
strong an assumption, and doesn’t permit all particle paths to be matched through Σ. Rather, the
matching of geodesic 4-momenta is the only way of extending all particle paths through a signature
change. The conclusion that the ‘rest-mass’ parameter of a particle has to jump, is consistent with
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the fact [19] that in general tensors cannot be smooth through Σ in both covariant and contravariant
forms, and that the density can jump across a signature change. In Fig. 1 we summarise the properties
of geodesics arriving at Σ at some particular value of RΣ. The horizontal axis is the parameter h2

L and
the plot covers a representative range of permissible h2

L values for the chosen RΣ.

Fig. 1. Diagram illustrating properties of combined Euclidean and Lorentzian geodesic
paths. The curves give values of various parameters, as functions of hL for geodesics arriving
at a constant T signature change surface at the point RΣ = 4M(those curves starting at
hL = 1/

√
2), and at constant R = 4M/5 surface (those curves starting at hL = 0). Vertical

slices through the graph give the values of hL, hE , mL/mE , Rmax
L (where it exists) and Rmin

E

or Rmax
E for individual geodesics.

Summary

Within the Schwarzschild metric form, signature change is possible on constant R surfaces
inside the horizon, but the resulting Euclidean region has strange matter, and continues to collapse to
a singularity. A second signature change back to a Lorentzian region is of course possible, but only at
a smaller R, closer to the future singularity. Signature change is also possible on constant T surfaces,
leading into a Euclidean region which is vacuum and has geodesics which do bounce. But constant T
surfaces are entirely outside the horizon, and so not very interesting, since a second transition back to
a Lorenzian spacetime results in the same future as the one that was avoided.

Attempts to continue geodesics through a signature change indicated that one must match the
4-momenta, which means that particle rest masses have to jump. If a second signature change back to
a Lorentzian metric occurred, the particle mass would not return to its original mass unless the model
were highly symmetric.

4. The Lemâıtre-Tolman Case

We now shift our attention to the Lemâıtre-Tolman metric [40, 41], primarily because it allows us
to deal simply with more general surfaces in spherical vacuum, and secondly because it makes possible
a generalisation of the black hole topology to non-empty models, thus describing more realistically the
collapse of matter into black holes, as well as the more standard cosmological collapse of matter, where
no wormhole topology is involved [42]. This gets us closer to Smolin’s scenario.

In the vacuum case, the Lemâıtre-Tolman metric with appropriate choice of parameters can
describe the full Schwarzschild-Kruskal-Szekeres manifold, avoiding a coordinate singularity at R = 2M
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and the accompanying change of character of the Schwarzschild R and T coordinates, and making it
clear which metric element should change sign at a change of signature. Its two arbitrary functions
make it much more flexible than the Kruskal-Szekeres metric.

The diagonal, synchronous, spherically symmetric metric, with an added factor of ε = ±1,

ds2 = εdt2 +B2(t, r)dr2 +R2(t, r)dΩ2 (37)

leads to the following Einstein tensor:

Gtt =
ε(2BRR′′ +BR′2 − 2B′RR′ −B3) + (2B2ḂRṘ +B3Ṙ2)

B3R2
(38)

Gtr =
2(ḂR′ −BṘ′)

BR
(39)

Grr =
(R′2 − B2) + ε(2B2RR̈ +B2Ṙ2)

R2
(40)

Gφφ

sin2 θ
= Gθθ =

R[(BR′′ − B′R′) + ε(B2B̈R +B2ḂṘ +B3R̈)]

B3
(41)

(42)

where ′ ≡ ∂/∂r & ˙≡ ∂/∂t and the cosmological constant is taken to be zero.

Solving the Einstein field equations for co-moving matter, uµ = δµ
t , and zero pressure, p = 0,

gives the Lemâıtre-Tolman model, and we get

B2 =
(R′)2

1 + f
, f(r) ≥ −1 (43)

−εṘ2 =
2M

R
+ f(r) (44)

R̈ = ε
M

R2
(45)

8πρ = Gtt = −ε 2M ′

R2R′
(46)

Rµ
µ = 2

((

2B′R′

B3R
− (R′)2

B2R2
− 2R′′

B2R

)

+
(1 − εṘ2)

R2
− ε

(

2R̈

R
+

2ḂṘ

BR
+
B̈

B

))

=
2M ′

R2R′
(47)

k = RµνλσRµνλσ

= 4





2R̈2

R2
+
B̈2

B2
+

(

1 − εṘ2

R2
− (R′)2

B2R2

)2

+2

(

R′′

B2R
− B′R′

B3R
+
εḂṘ

BR

)2

+ 4ε

(

Ṙ′

BR
− ḂR′

B2R

)2




= 4

(

3M ′2

R4R′2
− 8M ′M

R5R′
+

12M2

R6

)

(48)

where f = f(r) and M = M(r) are arbitrary functions of coordinate radius r, ρ is the density, and k
is the Kretschmann scalar. Singularitites in k and ρ occur at R = 0 and R′ = 0 regardless of ε. Shell
crossings occur where R′ = 0, since shells of matter at a different constant r, arrive at the same areal
radius R(t, r) and intersect each other. In vacuum, M ′ = 0, so ρ is zero and k is finite, and there is no
physical problem, but there is a bad coordinate coverage of the space. In non-vacuum cases care needs
to be taken to select the arbitrary functions which do not give rise to these physically troublesome shell
crossings [43].
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In the standard Lorentzian case (ε = −1), f(r) is a kind of local energy constant which
determines the type of time evolution — elliptic, parabolic or hyperbolic — as well as the local geometry,
and M(r) represents the total effective gravitational mass within comoving radius r.

In the Euclidean case (ε = +1) the acceleration (45) is everywhere positive, provided we select
a positive ‘mass’ term, so a bouncing Euclidean universe can be achieved. This requires fE to be
negative in order to keep Ṙ real, i.e. −1 ≤ fE < 0.

We now obtain solutions to the evolution equation (44), in terms of a parameter η, and a = a(r),
a third arbitrary function of r, which is the time of the big bang R = 0, or if we use the time reverse
of the following equations, the time of the big crunch. Solutions with f ≥ 0 or M ≤ 0 are discarded.
Although we can’t be sure negative ‘mass’ solutions are physically disallowed in a Euclidean manifold,
they all reach the R = 0 singularity, and none of them bounce (re-expand), so they do not serve our
purpose.

Lorentzian region ε = −1: elliptic solution, −1 ≤ fL < 0

R(t, r) =
ML

(−fL)
(1 − cos ηL), t =

ML

(−fL)3/2
(ηL − sin ηL) + aL(r) (49)

Euclidean region ε = +1: ME > 0, −1 ≤ fE < 0

R(t, r) =
ME

(−fE)
(cosh ηE + 1), t =

ME

(−fE)3/2
(sinh ηE + ηE) + aE(r) (50)

Any Lemâıtre-Tolman model with M ′ = 0 is a vacuum model, and thus for ε = −1 represents at
least a section of the Kruskal-Szekeres-Schwarzschild space time in geodesic coordinates. However not
every selection of the arbitrary functions gives complete coverage of the manifold. Novikov coordinates
[44] do cover the entire manifold, and are obtained with the following choices

ML = const, f =
−1

1 + (r/2ML)2
, aL(r) =

−πML

(−f)3/2
(51)

for which the surface t = 0 is a simultaneous time of maximum expansion, and f(0) = −1 at the
Schwarzschild throat, increasing monotonically to 0 as r → ±∞. This topology — two sheets joined
by a throat — may easily be extended to non-vacuum everywhere [42] by setting ML = ML(r) with a
minimum value at the throat. It is the form of f(r) which determines the topology. If the asymptotic
regions are closed FLRW cosmologies (f = −kr2, k = +1), then we still expect f to rise very close to
zero before decreasing again. In such dense black holes, the past and future event horizons are split,
and R = 2ML is an apparent horizon [42].

Matching conditions

We perform the matching on the simplest possible surface, that of constant time, t = constant.
In vacuum this is merely a coordinate restriction and not a physical one, because the origin of the time
coordinate, a (r), is an arbitrary function of position. It amounts to finding the family of geodesics
orthogonal to the transition surface, and using these as lines of constant r. The intrinsic metric of
such a surface is correspondingly simple:

dσ2 = B2 dr2 +R2 dΩ2 =
(R′)2

1 + f
dr2 +R2 dΩ2 (52)

When matching, a reasonable choice is to equate the angular parts, and to re-scale the coordinate
radii, so that

θE = θL, φE = φL, rE = rL (53)

and [3gij] = 0 fixes
RE = RL = RΣ, BE = BL = BΣ (54)
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Since R is continuous across the junction and is a function of r only on Σ, i.e. RΣ = RΣ(r), we have
also that

R′

E = R′

L = R′

Σ, ⇒ fE = fL = f (55)

Because of (43) the normal and the non-zero elements of the extrinsic curvature are:

nµ =
√
εεn δ

µ
t , nµnµ = εn = ε, (56)

Krr =
√
εεnBḂ =

R′Ṙ′

1 + f
, Kθθ =

√
εεn RṘ = RṘ =

Kφφ

sin2 θ
(57)

and [Kij] = 0 leads to
ṘL = ṘE, ḂL = ḂE ⇒ Ṙ′

L = Ṙ′

E (58)

The surface effects are

E(lα) = 2

(

(R′)2

B2R2
− 2B′R′

B3R
+

2R′′

B2R
− 1

R2

)

= 2

(

f

R2
+

f ′

RR′

)

(59)

B2E(er
α) = E(eα

r ) = 4
√
εεn

(

8ṘR′

R2
− 9Ṙ′

R

)

(60)

E(nα) =
2εεnṘ

2

R2
(61)

The principal feature we are looking for is a bouncing universe, meaning a Lorentzian region matched to
a bouncing Euclidean region that in turn may be matched to another Lorentzian region. This involves
establishing the existence of at least two solution surfaces in the Euclidean region of the model under
investigation. In general, given two space-like hypersurfaces, there will not be any geodesics that are
orthogonal to both, so requiring both to be t = constant surfaces in the same coordinate system could
well be restrictive.

General transitions

Five arbitrary functions, f(r), ME(r), ML(r), aL(r) and aE(r), are as yet unspecified. We
now derive the necessary relations between them at a surface of signature change. We do not assume
vacuum at this stage. Only models with f < 0 and ME > 0 give rise to a Euclidean region with a
bounce.

Condition (58) for Ṙ2 combines with the evolution equation (44) to give

ML −ME = Ṙ2

ΣRΣ or ML +ME = −fRΣ (62)

The sign of Ṙ must still be matched.

Inserting the parametric expressions for RΣ (49) and (50) into (62) gives

cos ηLΣ = −ME

ML
, cosh ηEΣ =

ML

ME
(63)

⇒ ME ≤ ML , −1 ≤ cos ηL ≤ 0 , 1 ≤ cosh ηE ≤ ∞ (64)

which, combined with the continuity of Ṙ for collapsing models, yields

tΣ < 0 : ηLΣ = 2π − cos−1(−ME/ML), ηEΣ = − cosh−1(ML/ME) (65)

Since the Euclidean region doesn’t have arbitrarily large Ṙ, the transition cannot happen arbitrarily
close to R = 0. On the transition surface tΣ is constant, so ηLΣ and ηEΣ are functions of r only. Thus

tEΣ = tΣ = aE(r) +
ME

(−f)3/2
(sinh ηEΣ + ηEΣ) (66)

tLΣ = tΣ = aL(r) +
ML

(−f)3/2
(ηLΣ − sin ηLΣ) (67)
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If possible, we choose aE(r) = 0, so that (66) gives a time-symmetric coordinate coverage in the
Euclidean region. This permits a second copy of any transition surface found away from t = 0, and
thus ensures a bounce. To obtain a specific solution, we fix tΣ and any two of ML,ME, aL, aE, to
obtain the others.

Further, (62) plus the requirement that the transition surface be inside the external horizon
R = 2ML max, where ML max is the total exterior mass of the collapsing cloud, gives us

f(r) < −ML(r) +ME(r)

2ML max
< − ML(r)

2ML max
(68)

since 0 ≤ME ≤ ML. At the centre we have f(0) < −(ML min/2MLmax) and outside the cloud or at
large r, f(r > rmax) < −(1/2), where rmax is the smallest radius for which ML(r) = ML max. This is
a very stong restriction on f .

Vacuum to Vacuum

We set the mass term constant (hence ρ = 0) and equal on either side ML = ME. By (62)
this gives ṘΣ = 0, and by (49) and (50) the areal radius can only be matched at

ηEΣ = 0, ηLΣ = π, RΣ =
2M

(−f)
, −1 ≤ f ≤ 0 (69)

the loci of minimum and maximum expansion of the Euclidean and Lorentzian coordinates respectively.
Clearly, this case is equivalent to a constant T transition in the Schwarzschild case, as Σ touches
R = 2M but otherwise lies entirely outside the horizon. If we set aE = 0, to obtain a symmetric
coverage of the Euclidean region, we have that the transition time is tΣ = 0 — i.e. there is no ‘time’
between the two transitions. This confirms our earlier suspicion that minimum expansion at the middle
of the throat is also a unique event in the Euclidean Schwarzschild topology.

Retaining ME and ML constant, but not necessarily equal, (63) shows that both ηE and ηL

are constant on the transition surface. The parametric expressions for t (66)-(67) then establish the
relation between f(r) and a(r). Again symmetric coverage of the Euclidean region — aE = 0 in (66)
— would require f = constant and hence RΣ = constant. The only way to get surfaces which have
constant t, R, and f , is to set f = −1 — dealt with next.

Constant R

The constant t surfaces can also be made constant R surfaces, thus yielding the closed
Kantowski-Sachs model [45] in Lemâıtre-Tolman coordinates [46]. This is done by setting

M = M1

∫

√

1 + f dr +M0, a = a1

∫

√

1 + f dr + a0, M0,M1, a0, a1 constants (70)

and then taking the limit f → −1, leading to

8πρ = −ε 2M1

R2B
(71)

ε = −1 : RL = M0L(1 − cos ηL), BL = 2M1L − (M1LηL + a1L)
sin ηL

(1 − cos ηL)
(72)

ε = +1 : RE = M0E(cosh ηE + 1), BE = 2M1E − (M1EηE + a1E)
sinh ηE

(cosh ηE + 1)
(73)

In Lorentzian vacuum, M1 = 0, ε = −1, these coordinates only cover R ≤ 2ML, and may be similarly
incomplete in dense models. Shell crossings may be avoided for −2π < (a1L/M1L) < 0 in Lorentzian
regions, but not in Euclidean regions. However, for a1E = 0, shell crossings are removed if transitions
happen at | ηEΣ |< 2.3994 which is the positive root of 2(cosh ηE + 1) − ηE sinh ηE = 0.
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By (62), RΣ = M0E + M0L and for M0E > 0 and Σ hidden (RΣ ≤ 2M0L) we need M0L <
RΣ ≤ 2M0L ⇒ 0 < M0E ≤M0L. Equations (62)-(63) and (66)-(67) become

RΣ = M0E +M0L, cos ηLΣ = −M0E

M0L

, cosh ηEΣ = M0L

M0E

(74)

a0E +M0E(sinh ηEΣ + ηEΣ) = tΣ = a0L +M0L(ηLΣ − sin ηLΣ) (75)

and because the matching of RΣ and ṘΣ no longer ensures BΣ and ḂΣ is matched, we get two extra
conditions

(M0EM1L −M0LM1E)RΣ+

((M1L −M1E)tΣ − a0LM1L + a0EM1E + a1LM0L − a1EM0E)
√

M2
0L −M2

0E = 0 (76)

(M1L +M1E)tΣ − a0LM1L − a0EM1E + a1LM0L + a1EM0E) = 0 (77)

Simplifications are obtained by requiring a symmetric Euclidean region a0E = 0, a1E = 0. Vacuum
to vacuum is not possible since M1L = 0, M1E = 0 implies a1E = 0 = a1L, and thus BL =
0 = BE at all times. Similarly, vacuum to non-vacuum is not possible. The dense models are
highly symmetric, as they have uniform density on constant R surfaces. A sample set of values are:
M0E/M0L = 0.1, ηEΣ = −2.9932, ηLΣ = 4.6122, a0E = 0, tΣ/M0L = −1.2943, a0L/M0L =
−6.9015, RΣ/M0L = 1.1, a1E = 0, M1E/M1L = 0.0407, a1L/M1L = −5.5476, BΣ/M1L =
1.1539, ρLM

2
0L = 0.0570, ρEM

2
0L = 0.0057.

Dust to Dust — Wormhole Topology

We set ML = ML(r) and ME = ME(r). Since space-time is no longer empty, not all geodesic
coordinate systems are equivalent to the comoving one, so a symmetric coordinate coverage of the
Euclidean region becomes essential to ensure the existence of a second transition surface. From (63)
and (66) with aE = 0 we obtain:

F (r) ≡ (−f)3/2tΣ
ML

=
sinh ηEΣ + ηEΣ

cosh ηEΣ

≡ D(ηEΣ) (78)

where the right hand side defines D(ηEΣ), and the left hand side defines F (r). For a Kruskal-Szekeres-
Schwarzschild type topology (Lorentzian) [42], we expect f to take a Novikov-like form, i.e. symmetric,
f(−r) = f(r), with f(0) = −1 a minimum at r = 0, and rising monotonically. To cover the
asymptotically flat regions at large R requires f(±∞) = 0 (since fE > 0 doesn’t give a bounce). We
expect the mass ML to be minimum at r = 0 and rising monotonically to a finite value. For example

f =
−1

1 + r2
, ML =

ML min +ML maxr
2

1 + r2
(79)

With these choices and ML min = (1/3)MLmax, F (r) and D(ηEΣ) are plotted in Figs 2a and 2b. The
main features of F (r) are dictated by the topology, and are independent of the particular choices of
f(r) and ML(r).
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Fig. 2a. The function F (r) vs. r.

Fig. 2b. The function D(η) vs. η.

The mapping between F and D is needed to fix the r dependence of ηEΣ(r). We have at our
disposal only one constant, tΣ/ML min, which is freely adjustable, so we need to select the section of
the D graph which includes 0, in order to accomodate f → 0. Also since F is monotonic, the range
of ηEΣ cannot extend through the maximum of D(ηEΣ), Dmax. Hence we have a restriction on when
in the Euclidean evolution the transition can occur. To obtain f(0) = −1 we need

f = −1 ⇒ tΣ
ML min

=
sinh ηEΣ + ηEΣ

cosh ηEΣ

(80)

and consequently the following ranges are allowed:

0 ≤ tΣ
ML min

≤ Dmax, 0 ≤ ηEΣ ≤ ηEΣmax,
ML

cosh ηEΣmax
≤ME ≤ML (81)
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where
Dmax = 1.5434, at ηEΣmax = 1.5434 = Dmax (82)

Although the range ηEΣmax ≤ ηEΣ ≤ ∞ is not obviously precluded in principle, it results in a different
sign for dηEΣ/dr, which affects R′

Σ, ρEΣ and ρLΣ, as well as limiting the range of R.

We now find some sample solutions numerically. Our plotting procedure is as follows:
— Select the Lorentzian mass, ML;
— Choose a transition time tΣ which complies with (81);
— Generate values of ME which span all values allowed by (81), for the given tΣ and ML;
— For each ME value calculate:

— f from (66): f = −[(sinh ηEΣ + ηEΣ)ME/(tΣ − aE)]2/3;

— r from (79): r =
√

(1 + f)/(−f);

— RΣ from (62): RΣ = (ML +ME)/(−f);
— aL from (67): aL = tΣ − (ηLΣ − sin ηLΣ)ML/(−f)3/2;
— ρEΣ and ρLΣ from (46): ρΣ = 2M ′/R2

ΣR
′

Σ

(The last requires the values of M ′

E and R′, obtained from the derivatives with respect to r of (66),
(67), (63), and (62)).

Having found two surfaces where a signature change could occur, i.e. tL→E
Σ = −tE→L

Σ > 0, the
idea is to excise the future singularity in one Lorentzian region, and the past singularity in the other,
and join them with the Euclidean region.

The following three models are typical. They use the forms ML = (ML min+ML maxr
2)/(1+r2),

(−1 + f∞r
2)/(1 + r2) and the values:

(a) tΣ/ML min = 1.4096484 = D(1)
ML min/ML max = 0.93
f∞ = −0.93

(b) tΣ/ML min = 1.5434 = Dmax

ML min/MLmax = 0.93
f∞ = −0.93

(c) tΣ/MLmin = 1.4096484 = D(1)
ML min/MLmax = 1/3
f∞ = 0

Figs. 3 to 6 show f , aL, ME, ML, RΣ, ρEΣ and ρLΣ as functions of r, for these models.
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Fig. 3. f(r) vs. r for the three Lemâıtre-Tolman signature change models, (a), (b) and (c).

Fig. 4. aL(r) vs r, for models (a), (b) and (c). Note that (b) has its maximum away from
r = 0, whereas (a) and (c) has it at r = 0.

Fig. 5a. The run of RΣ(r), ML(r) and ME(r) for model (a).
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Fig. 5b. RΣ(r), ML(r) and ME(r) for model (b). Note that none of these quantities are
smooth through the origin r = 0.

Fig. 5c. RΣ(r), ML(r) and ME(r) for model (c).
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Fig. 6a. The run of ρL and ρE for model (a).

Fig. 6b. ρL and ρE for model (b). Note that neither quantity is smooth through the origin
r = 0.
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Fig. 6c. ρL and ρE for model (c).

As expected, the areal radius has a minimum at r = 0 and does not go singular, and both the
Lorentzian and Euclidean ‘densities’ are well behaved at the transition.

Model (a) has Σ entirely inside the external event horizon R = 2ML max, as shown in Fig. 5a,
and it was found that there must be very little variation in ML(r) and f(r) (Fig. 3) to achieve this.
The densities on each side of Σ are also only mildly varying, as shown in Fig. 6a. It could be thought
of as a perturbation of a Kantowski-Sachs model, allowing the particle world lines to emerge beyond
R = 2ML briefly, before recollapsing back inside and encountering the signature change. Since this
is true even for r → ∞, the particles do not fill the spacetime, and the model may be completed by
matching to a vacuum exterior. This makes a very satisfactory model of signature change in the black
hole topology.

Model (b) differs only in having the largest possible value of tΣ/MLmin. This results in aL,
ME, ML, RΣ, ρEΣ and ρLΣ all having non-zero gradient at r = 0, meaning these quantities are
discontinuous through the origin — see Figs. 5b and 6b. A feature of this model is that the bang
time aL(r) has a maximum away from r = 0 (Fig. 4), indicating the particle world lines self intersect
somewhere in the time evolution of the Lorentzian part of the model [43, 42]. This ‘shell crossing’ is
now a serious deficiency of the model, involving densities that diverge and go negative. Otherwise it is
very similar to (a).

Model (c) is complete since r → ∞ covers the asymptotic regions of the model, and f → 0
means it is asymptotically flat. However the signature change surface passes out of R = 2ML max and
extends to R = ∞ (Fig. 5c), which is not ideal, despite the nice density profile in Fig. 6c.

Summary

Within the Lemâıtre-Tolman metric form, the wormhole topology is possible in both Lorentzian
and Euclidean regions with and without matter (dust) present. The Euclidean region bounces provided
the mass function is positive (as defined in (44)), so negative mass models were not considered. Only
constant t transition surfaces, which are orthogonal to the fluid flow, were considered.

Vacuum to Vacuum signature transitions are equivalent to the uninteresting constant T Schwarzschild
case.
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Signature transitions are possible inside the horizon if the density is non zero on both sides of
the transition. Time symmetric Euclidean regions permit a second transition following the bounce,
emerging into an expanding spacetime behind the past singularity. This is true both for the constant
R transitions in uniform density Kantowski-Sachs type models, and the more general inhomogeneous
case. The general case is particularly satisfactory as it models a finite cloud of dust.

5. Conclusion

We have succeeded in demonstrating the possibility that a change in the signature of space-time
may occur in the late stages of black hole collapse, resulting in a Euclidean region which bounces and
re-expands, passing through a second signature change to a new expanding Lorentzian space-time.
The classical singularity at R = 0 is thus avoided. Such transition surfaces necessarily have non-zero
extrinsic curvature.

The model of signature change employed here is strictly classical. Quantum cosmological ques-
tions, for example the relative probability of different sorts of transitions, have not been considered.
We have based our notion of manifold continuity on the fulfillment of the Darmois type matching con-
ditions, since they are invariant to the coordinates used, and no modifications are necessary to adapt
them to surfaces of signature change. As discussed in [19], surface effects appear in the conservation
laws, even when stronger conditions than Darmois’ are imposed.

Based on this approach, we have shown that signature transitions are possible in a spherically
symmetric Lorentzian space-time, in both the Schwarzschild and Lemâıtre-Tolman metric representa-
tions, though the ensuing Euclidean region might not be empty. Once the Israel identities are adapted
to signature change, continuous ‘density’ is no longer required.

Within the Schwarzschild metric form, such a transition was possible on a constant T slice, but
this can only span the outer region R ≥ 2M . Conversely the constant R surface can be entirely inside
the horizon, but does not lead to a bouncing Euclidean region. Thus these models are not satisfactory.

A study of the geodesics in each region showed that the two Euclidean regions, R ≥ 2M and
R ≤ 2M were in fact complete manifolds. It was found necessary to match geodesic 4-momenta,
P µ, at the signature change, in order that all geodesics could be continued. This naturally means Pµ

and m2 = |P µPµ| are discontinuous. This is consistent with the fact that the density can jump at a
signature change.

These results were generalised using constant t transitions in the Lemâıtre-Tolman metric form.
With suitable choices of the function f(r), this metric can reproduce the Kruskal-Szekeres topology of
two sheets joined by a wormhole, but with non zero density. It also has a Kantowski-Sachs limit. It
was found possible to have a signature change surface completely hidden inside the horizon R = 2M
in the Lorenzian region, provided there was non-zero density in both the Lorentzian and Euclidean
regions. In the Lorentzian region, the matter is of finite extent, and may be surrounded by vacuum. It
was also possible for the Euclidean region to be time-symmetric, so that after the bounce, the matter
expands through a second signature change into another Lorentzian region — a new universe. This
makes a very satisfactory model of collapse, bounce and re-expansion of a mass concentration. Within
the Lemâıtre-Tolman form, a constant t signature change surface cannot be arbitrarily close to the
Lorentzian singularity R = 0. One might expect such transitions to occur only a Planck time before
R = 0, which would require us to consider a different equation of state in the Euclidean region. This
may well relax the limits on ηΣ and f that were found.

It was found possible to hide the entire signature change surface inside the Lorentzian horizon
R = 2ML, if the model is non-vacuum in the central regions, with a vacuum exterior. The matter is
collapsing from not far outside the horizon, as may be expected for a collapsing compact object. The
limit on f for a completely hidden surface implies (1) that all the infalling matter must be in a finite
cloud, moving on tightly bound paths (Rmax ≤ 4ML), surrounded by vacuum, and (2) that the black
hole topology is required. This provides a classical bounce model of the kind we sought. A quantum
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cosmological analogue could be of interest in the context of Smolin’s ‘natural history’ of universes
proposal. A treatment similar to that of Kerner and Martin [47, 48] could permit the non-zero extrinsic
curvature that is required.
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